Abstract
Overweight, obesity, undernutrition and their respective sequelae have devastating tolls on personal and public health worldwide.
Traditional approaches for treating these conditions with diet, exercise, drugs and/or surgery have shown varying degrees of success, creating an urgent need for new solutions with long-term efficacy.
Owing to transformative advances in sequencing, bioinformatics and gnotobiotic experimentation, we now understand that the gut microbiome profoundly impacts energy balance through diverse mechanisms affecting both sides of the energy balance equation.
Our growing knowledge of microbial contributions to energy metabolism highlights new opportunities for weight management, including the microbiome-aware improvement of existing tools and novel microbiome-targeted therapies.
In this Review, we synthesize current knowledge concerning the bidirectional influences between the gut microbiome and existing weight management strategies, including behaviour-based and clinical approaches, and incorporate a subject-level meta-analysis contrasting the effects of weight management strategies on microbiota composition. We consider how emerging understanding of the gut microbiome alters our prospects for weight management and the challenges that must be overcome for microbiome-focused solutions to achieve success.
Link to the complete article: https://www.nature.com/articles/s41579-023-00888-0
References
- Malnutrition. WHOhttps://www.who.int/news-room/fact-sheets/detail/malnutrition (2021).
- Obesity and overweight. WHOhttps://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2021).
- Popkin, B. M., Corvalan, C. & Grummer-Strawn, L. M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet395, 65–74 (2020).
- Anastasiou, C. A., Karfopoulou, E. & Yannakoulia, M. Weight regaining: from statistics and behaviors to physiology and metabolism. Metabolism64, 1395–1407 (2015).
Article CAS PubMed Google Scholar
- Johannsen, D. L. et al. Metabolic slowing with massive weight loss despite preservation of fat-free mass. Clin. Endocrinol. Metab.97, 2489–2496 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Fothergill, E. et al. Persistent metabolic adaptation 6 years after ‘The Biggest Loser’ competition. Obesity24, 1612–1619 (2016).
- Guerrant, R. L., DeBoer, M. D., Moore, S. R., Scharf, R. J. & Lima, A. A. M. The impoverished gut — a triple burden of diarrhoea, stunting and chronic disease. Rev. Gastroenterol. Hepatol.10, 220–229 (2013).
- Veenendaal, M. V. E. et al. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. J. Obstet. Gynaecol.120, 548–554 (2013).
- Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Natl Acad. Sci. USA101, 15718–15723 (2004).
Article PubMed PubMed Central Google Scholar
- Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Transl Med.1, 6ra14 (2009).
Article PubMed PubMed Central Google Scholar
- Cox, L. M. & Blaser, M. J. Antibiotics in early life and obesity. Rev. Endocrinol.11, 182–190 (2014).
Article PubMed PubMed Central Google Scholar
- Cani, P. D. et al. Microbial regulation of organismal energy homeostasis. Metab.1, 34–46 (2019).
Article CAS PubMed Google Scholar
- Gilbert, J. A. et al. Current understanding of the human microbiome. Med.24, 392–400 (2018).
Article CAS PubMed PubMed Central Google Scholar
- Al-Asmakh, M. & Zadjali, F. Use of germ-free animal models in microbiota-related research. Microbiol. Biotechnol.25, 1583–1588 (2015).
- Gheorghe, C. E. et al. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes13, 1941711 (2021).
Article PubMed PubMed Central Google Scholar
- Hayes, C. L. et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Rep.8, 14184 (2018).
Article PubMed PubMed Central Google Scholar
- Kawai, Y. & Morotomi, M. Intestinal enzyme activities in germfree, conventional, and gnotobiotic rats associated with indigenous microorganisms. Immun.19, 771–778 (1978).
Article CAS PubMed PubMed Central Google Scholar
- Slezak, K. et al. Association of germ-free mice with a simplified human intestinal microbiota results in a shortened intestine. Gut Microbes5, 176–182 (2014).
Article PubMed PubMed Central Google Scholar
- Fouladi, F. et al. Sequence variant analysis reveals poor correlations in microbial taxonomic abundance between humans and mice after gnotobiotic transfer. ISME J.14, 1809–1820 (2020).
Article CAS PubMed PubMed Central Google Scholar
- Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell180, 221–232 (2020).
Article CAS PubMed Google Scholar
- Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444, 1027–1031 (2006). This study establishes that the gut microbiome differs between individuals who are lean and obese and that obese phenotypes are transmissible to gnotobiotic mice.
- Li, M. et al. Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice. Commun.13, 2060 (2022).
Article CAS PubMed PubMed Central Google Scholar
- Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature540, 544–551 (2016). This study implicates microbiome contributions to weight regain after weight loss.
Article CAS PubMed Google Scholar
- Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell150, 470–480 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science339, 548–554 (2013). This study finds an immature gut microbiome configuration in a severe form of undernutrition.
Article CAS PubMed PubMed Central Google Scholar
- Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature510, 417–421 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Liou, A. P. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Transl Med.5, 178ra41 (2013).
Article PubMed PubMed Central Google Scholar
- von Schwartzenberg, R. J. et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature595, 272–277 (2021).
- Carmody, R. N. et al. Cooking shapes the structure and function of the gut microbiome. Microbiol.4, 2052–2063 (2019).
Article PubMed PubMed Central Google Scholar
- Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell158, 705–721 (2014). This study shows that gut microbiome perturbations in early life can have long-term consequences even when signatures recover.
Article CAS PubMed PubMed Central Google Scholar
- McGuire, M. K. & McGuire, M. A. Microbiomes and childhood malnutrition: what is the evidence? Nutr. Metab.77, 36–48 (2021).
- Vonaesch, P. et al. Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Natl Acad. Sci. USA115, E8489–E8498 (2018).
Article CAS PubMed PubMed Central Google Scholar
- Kimura, I. et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science367, eaaw8429 (2020). This study demonstrates that exposure to SCFAs in utero alters development in a manner that protects against the adult metabolic consequences of a high-fat diet.
Article CAS PubMed Google Scholar
- Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell184, 3394–3409 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Schulfer, A. F. et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Microbiol.3, 234–242 (2018).
Article CAS PubMed Google Scholar
- Falony, G. et al. Population-level analysis of gut microbiome variation. Science352, 560–564 (2016).
Article CAS PubMed Google Scholar
- Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science352, 565–569 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Cotillard, A. et al. A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project. J. Clin. Nutr.115, 432–443 (2022).
- Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Med.27, 321–332 (2021). This study correlates microbiome composition with dietary records and metabolic panels, finding connections between specific microorganisms and health.
Article CAS PubMed PubMed Central Google Scholar
- David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature505, 559–563 (2014). This human study demonstrates that gut microbiome composition and function respond to diet within days of administration.
Article CAS PubMed Google Scholar
- Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science334, 105–108 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Oliver, A. et al. High-fiber, whole-food dietary intervention alters the human gut microbiome but not fecal short-chain fatty acids. mSystems6, e00115–e00121 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Grembi, J. A. et al. Gut microbiota plasticity is correlated with sustained weight loss on a low-carb or low-fat dietary intervention. Rep.10, 1405 (2020). This study demonstrates that weight loss success was correlated with the extent of microbiome response to diet.
Article CAS PubMed PubMed Central Google Scholar
- Bisanz, J. E., Upadhyay, V., Turnbaugh, J. A., Ly, K. & Turnbaugh, P. J. Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host Microbe26, 265–272 (2019).
Article CAS PubMed PubMed Central Google Scholar
- Dalby, M. J., Ross, A. W., Walker, A. W. & Morgan, P. J. Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice. Cell Rep.21, 1521–1533 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Ang, Q. Y. et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell181, 1263–1275 (2020).
Article CAS PubMed PubMed Central Google Scholar
- Ge, L. et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. Med. J.369, m696 (2020).
- Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell165, 1332–1345 (2016). This review summarizes the origin and physiological functions of SCFAs.
Article CAS PubMed Google Scholar
- Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature529, 212–215 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell184, 4137–4153 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science359, 1151–1156 (2018).
Article CAS PubMed Google Scholar
- Lancaster, S. M. et al. Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host Microbe30, 848–862 (2022).
Article CAS PubMed Google Scholar
- Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Rev. Gastroenterol. Hepatol.14, 491–502 (2017).
- Baxter, N. T. et al. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio10, e02566-18 (2019).
Article PubMed PubMed Central Google Scholar
- Deehan, E. C. et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe27, 389–404 (2020).
Article CAS PubMed Google Scholar
- Chassaing, B. et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology162, 743–756 (2022).
Article CAS PubMed Google Scholar
- Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature514, 181–186 (2014). This study demonstrates that non-nutritive artificial sweeteners impacted microbiome composition with negative consequences for metabolic health.
Article CAS PubMed Google Scholar
- Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature519, 92–96 (2015). This study demonstrates that dietary emulsifiers compromise metabolic health via disruption of the gut microbiota and mucosal barrier.
Article CAS PubMed PubMed Central Google Scholar
- Bian, X. et al. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem. Toxicol.107, 530–539 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Rodriguez-Palacios, A. et al. The artificial sweetener Splenda promotes gut Proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn’s disease-like ileitis. Bowel Dis.24, 1005–1020 (2018).
Article PubMed PubMed Central Google Scholar
- Suez, J. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell185, 3307–3328 (2022).
Article CAS PubMed Google Scholar
- Serrano, J. et al. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome9, 11 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Thomson, P., Santibañez, R., Aguirre, C., Galgani, J. E. & Garrido, D. Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. J. Nutr.122, 856–862 (2019).
Article CAS PubMed Google Scholar
- Cristofori, F. et al. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Immunol.12, 578386 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Tao, Y.-W., Gu, Y.-L., Mao, X.-Q., Zhang, L. & Pei, Y.-F. Effects of probiotics on type II diabetes mellitus: a meta-analysis. Transl Med.18, 30 (2020).
Article CAS PubMed PubMed Central Google Scholar
- Kocsis, T. et al. Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: a meta-analysis of randomized clinical trials. Rep.10, 11787 (2020).
Article CAS PubMed PubMed Central Google Scholar
- Álvarez-Arraño, V. & Martín-Peláez, S. Effects of probiotics and synbiotics on weight loss in subjects with overweight or obesity: a systematic review. Nutrients13, 3627 (2021).
Article PubMed PubMed Central Google Scholar
- Park, S. & Bae, J.-H. Probiotics for weight loss: a systematic review and meta-analysis. Res.35, 566–575 (2015).
Article CAS PubMed Google Scholar
- Eales, J. et al. Is consuming yoghurt associated with weight management outcomes? Results from a systematic review. J. Obes.40, 731–746 (2016).
- Lim, S., Moon, J. H., Shin, C. M., Jeong, D. & Kim, B. Effect of Lactobacillus sakei, a probiotic derived from kimchi, on body fat in Koreans with obesity: a randomized controlled study. Metab.35, 425–434 (2020).
- Kapp, J. M. & Sumner, W. Kombucha: a systematic review of the empirical evidence of human health benefit. Epidemiol.30, 66–70 (2019).
- Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe17, 72–84 (2015).
Article CAS PubMed Google Scholar
- Christensen, L. et al. Prevotellaabundance predicts weight loss success in healthy, overweight adults consuming a whole-grain diet ad libitum: a post hoc analysis of a 6-wk randomized controlled trial. Nutr.149, 2174–2181 (2019).
- Menni, C. et al. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. J. Obes.41, 1099–1105 (2017).
- Jian, C. et al. Gut microbiota predicts body fat change following a low-energy diet: a PREVIEW intervention study. Genome Med.14, 54 (2022).
Article CAS PubMed PubMed Central Google Scholar
- Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature548, 43–51 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Carmody, R. N., Sarkar, A. & Reese, A. T. Gut microbiota through an evolutionary lens. Science372, 462–463 (2021).
Article CAS PubMed Google Scholar
- Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell163, 1079–1094 (2015). This study shows that models incorporating the gut microbiome improved prediction of postprandial glycaemic response.
Article CAS PubMed Google Scholar
- Johnson, A. J. et al. Daily sampling reveals personalized diet–microbiome associations in humans. Cell Host Microbe25, 789–802 (2019).
Article CAS PubMed Google Scholar
- Lai, Z.-L. et al. Fecal microbiota transplantation confers beneficial metabolic effects of diet and exercise on diet-induced obese mice. Rep.8, 15625 (2018).
Article PubMed PubMed Central Google Scholar
- Cronin, O. et al. A prospective metagenomic and metabolomic analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. mSystems3, e00044-18 (2018).
Article PubMed PubMed Central Google Scholar
- Kang, S. S. et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Neurodegener.9, 36 (2014).
Article PubMed PubMed Central Google Scholar
- Mohr, A. E. et al. The athletic gut microbiota. Int. Soc. Sports Nutr.17, 24 (2020).
Article PubMed PubMed Central Google Scholar
- Allen, J. M. et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. Appl. Physiol.118, 1059–1066 (2015).
Article CAS PubMed Google Scholar
- Matsumoto, M. et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biotechnol. Biochem.72, 572–576 (2008).
Article CAS PubMed Google Scholar
- Allen, J. M. et al. Exercise alters gut microbiota composition and function in lean and obese humans. Sci. Sports Exerc.50, 747–757 (2018).
- Scheiman, J. et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Med.25, 1104–1109 (2019). This study suggests that lactate-consuming, propionate-producing microorganisms positively influence exercise performance.
Article CAS PubMed PubMed Central Google Scholar
- Zhao, X. et al. Response of gut microbiota to metabolite changes induced by endurance exercise. Microbiol.9, 765 (2018).
Article PubMed PubMed Central Google Scholar
- Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut63, 1913–1920 (2014).
Article CAS PubMed Google Scholar
- Barton, W. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut67, 625–633 (2018).
- Petersen, L. M. et al. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome5, 98 (2017).
Article PubMed PubMed Central Google Scholar
- Durk, R. P. et al. Gut microbiota composition is related to cardiorespiratory fitness in healthy young adults. J. Sport. Nutr. Exerc. Metab.29, 249–253 (2019).
Article CAS PubMed Google Scholar
- Estaki, M. et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome4, 42 (2016).
Article PubMed PubMed Central Google Scholar
- Morita, H. et al. Bacteroides uniformisand its preferred substrate, α-cyclodextrin, enhance endurance exercise performance in mice and human males. Adv.9, eadd2120 (2023).
Article CAS PubMed PubMed Central Google Scholar
- Liu, Y. et al. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metab.31, 77–91 (2020).
Article CAS PubMed Google Scholar
- Bressa, C. et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE12, e0171352 (2017).
Article PubMed PubMed Central Google Scholar
- Munukka, E. et al. Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Microbiol.9, 2323 (2018).
Article PubMed PubMed Central Google Scholar
- Carmody, R. N. & Baggish, A. L. Working out the bugs: microbial modulation of athletic performance. Metab.1, 658–659 (2019).
- Hoffman-Goetz, L., Pervaiz, N., Packer, N. & Guan, J. Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes. Brain Behav. Immun.24, 1105–1115 (2010).
Article CAS PubMed Google Scholar
- Ismail, A. S. et al. γδ Intraepithelial lymphocytes are essential mediators of host–microbial homeostasis at the intestinal mucosal surface. Natl Acad. Sci. USA108, 8743–8748 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Jeukendrup, A. E. et al. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Sci.98, 47–55 (2000).
- Lira, F. S. et al. Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly trained subjects. Lipids Health Dis.9, 82 (2010).
Article PubMed PubMed Central Google Scholar
- Meissner, M. et al. Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice. Atherosclerosis218, 323–329 (2011).
Article CAS PubMed Google Scholar
- Yardeni, T. et al. Host mitochondria influence gut microbiome diversity: a role for ROS. Signal. 12, eeaw3159 (2019).
- Song, B. K., Cho, K. O., Jo, Y., Oh, J. W. & Kim, Y. S. Colon transit time according to physical activity level in adults. Neurogastroenterol. Motil.18, 64–69 (2012).
Article PubMed PubMed Central Google Scholar
- Asnicar, F. et al. Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut70, 1665–1674 (2021).
Article CAS PubMed Google Scholar
- van Wijck, K. et al. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS ONE6, e22366 (2011).
Article PubMed PubMed Central Google Scholar
- Murphy, R. M., Watt, M. J. & Febbraio, M. A. Metabolic communication during exercise. Metab.2, 805–816 (2020).
- O’Brien, P. E. et al. Long-term outcomes after bariatric surgery: a systematic review and meta-analysis of weight loss at 10 or more years for all bariatric procedures and a single-centre review of 20-year outcomes after adjustable gastric banding. Surg.29, 3–14 (2019).
- Kong, L.-C. et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. J. Clin. Nutr.98, 16–24 (2013).
Article CAS PubMed Google Scholar
- Paganelli, F. L. et al. Roux-Y gastric bypass and sleeve gastrectomy directly change gut microbiota composition independent of surgery type. Rep.9, 10979 (2019).
Article PubMed PubMed Central Google Scholar
- Li, J. V. et al. Roux-en-Y gastric bypass-induced bacterial perturbation contributes to altered host-bacterial co-metabolic phenotype. Microbiome9, 139 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Tremaroli, V. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab.22, 228–238 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Shen, N. et al. Longitudinal changes of microbiome composition and microbial metabolomics after surgical weight loss in individuals with obesity. Obes. Relat. Dis.15, 1367–1373 (2019).
Article PubMed PubMed Central Google Scholar
- Shantavasinkul, P. C., Omotosho, P., Corsino, L., Portenier, D. & Torquati, A. Predictors of weight regain in patients who underwent Roux-en-Y gastric bypass surgery. Obes. Relat. Dis.12, 1640–1645 (2016).
- Gutiérrez-Repiso, C. et al. Gut microbiota specific signatures are related to the successful rate of bariatric surgery. J. Transl Res.11, 942–952 (2019).
PubMed PubMed Central Google Scholar
- Fouladi, F. et al. The role of the gut microbiota in sustained weight loss following Roux-en-Y gastric bypass surgery. Surg.29, 1259–1267 (2019).
- Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Rev. Microbiol.14, 273–287 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature555, 623–628 (2018).
Article CAS PubMed PubMed Central Google Scholar
- Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Med.23, 850–858 (2017). This study establishes that interactions between metformin and the gut microbiome impact efficacy for diabetes treatment.
Article CAS PubMed Google Scholar
- Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature528, 262–266 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Zhang, X. et al. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Ther.8, 293–307 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Balaich, J. et al. The human microbiome encodes resistance to the antidiabetic drug acarbose. Nature600, 110–115 (2021).
Article CAS PubMed Google Scholar
- Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature581, 310–315 (2020).
Article CAS PubMed Google Scholar
- Wilmanski, T. et al. Heterogeneity in statin responses explained by variation in the human gut microbiome. Med3, 388–405 (2022).
Article CAS PubMed Google Scholar
- Baunwall, S. M. D. et al. Faecal microbiota transplantation for recurrent Clostridioides difficileinfection: an updated systematic review and meta-analysis. eClinicalMedicine 29–30, 100642 (2020).
Article PubMed PubMed Central Google Scholar
- Imdad, A. et al. Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database Syst. Rev.11, CD012774 (2018).
- Yu, E. W. et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med.17, e1003051 (2020).
Article PubMed PubMed Central Google Scholar
- Leong, K. S. W. et al. Effects of fecal microbiome transfer in adolescents with obesity: the gut bugs randomized controlled trial. JAMA Netw. Open3, e2030415 (2020).
Article PubMed PubMed Central Google Scholar
- Mocanu, V. et al. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: a randomized double-blind, placebo-controlled phase 2 trial. Med.27, 1272–1279 (2021).
Article CAS PubMed Google Scholar
- Rinott, E. et al. Effects of diet-modulated autologous fecal microbiota transplantation on weight regain. Gastroenterology160, 158–173 (2021). This study demonstrates the potential for self-faecal transplant combined with diet to improve the maintenance of weight loss.
Article CAS PubMed Google Scholar
- Rinott, E. et al. Autologous fecal microbiota transplantation can retain the metabolic achievements of dietary interventions. J. Intern. Med.92, 17–23 (2021).
Article CAS PubMed Google Scholar
- Plovier, H. et al. A purified membrane protein from Akkermansia muciniphilaor the pasteurized bacterium improves metabolism in obese and diabetic mice. Med. 23, 107–113 (2017).
Article CAS PubMed Google Scholar
- Depommier, C. et al. Supplementation with Akkermansia muciniphilain overweight and obese human volunteers: a proof-of-concept exploratory study. Med. 25, 1096–1103 (2019). This human intervention study shows that daily A. muciniphila supplementation had beneficial effects on metabolic health.
Article CAS PubMed PubMed Central Google Scholar
- Yoon, H. S. et al. Akkermansia muciniphilasecretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Microbiol. 6, 563–573 (2021).
Article CAS PubMed Google Scholar
- Bae, M. et al. Akkermansia muciniphilaphospholipid induces homeostatic immune responses. Nature 608, 168–173 (2022).
Article CAS PubMed PubMed Central Google Scholar
- Beresford-Jones, B. S. et al. The mouse gastrointestinal bacteria catalogue enables translation between the mouse and human gut microbiotas via functional mapping. Cell Host Microbe30, 124–138 (2022).
Article CAS PubMed PubMed Central Google Scholar
- Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature489, 220–230 (2012).
Article CAS PubMed PubMed Central Google Scholar
- David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol.15, R89 (2014).
Article PubMed PubMed Central Google Scholar
- Arnold, J. W., Roach, J. & Azcarate-Peril, M. A. Emerging technologies for gut microbiome research. Trends Microbiol.24, 887–901 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Yu, H. et al. The contributions of human mini-intestines to the study of intestinal physiology and pathophysiology. Rev. Physiol.79, 291–312 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Karcher, N. et al. Genomic diversity and ecology of human-associated Akkermansiaspecies in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol. 22, 209 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Liu, Q. et al. Akkermansia muciniphilaexerts strain-specific effects on DSS-induced ulcerative colitis in mice. Cell. Infect. Microbiol. 11, 698914 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature570, 462–467 (2019).
Article CAS PubMed PubMed Central Google Scholar
- Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science341, 295–298 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science330, 831–835 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science364, eaau6323 (2019).
- Gough, E. K. et al. Linear growth faltering in infants is associated with Acidaminococcus and community-level changes in the gut microbiota. Microbiome3, 24 (2015).
Article PubMed PubMed Central Google Scholar
- Raman, A. S. et al. A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science365, eaau4735 (2019).
Article PubMed PubMed Central Google Scholar
- Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science365, eaau4732 (2019).
Article PubMed PubMed Central Google Scholar
- Chen, R. Y. et al. A microbiota-directed food intervention for undernourished children. Engl. J. Med.384, 1517–1528 (2021). This trial shows that a microbiota-targeted dietary intervention could improve health in undernourished children.
Article PubMed PubMed Central Google Scholar
- Semova, I. et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe12, 277–288 (2012).
Article CAS PubMed Google Scholar
- Martinez-Guryn, K. et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe23, 458–469 (2018).
Article CAS PubMed PubMed Central Google Scholar
- Chadaideh, K. S. & Carmody, R. N. Host–microbial interactions in the metabolism of different dietary fats. Cell Metab.33, 857–872 (2021).
Article CAS PubMed Google Scholar
- Carmody, R. N. & Wrangham, R. W. The energetic significance of cooking. Hum. Evol.57, 379–391 (2009).
- Carmody, R. N., Weintraub, G. S. & Wrangham, R. W. Energetic consequences of thermal and nonthermal food processing. Natl Acad. Sci. USA108, 19199–19203 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Cummings, J. H. & Macfarlane, G. T. Role of intestinal bacteria in nutrient metabolism. Nutr.16, 3–11 (1997).
- McNeil, N. I. The contribution of the large intestine to energy supplies in man. J. Clin. Nutr.39, 338–342 (1984).
Article CAS PubMed Google Scholar
- den Besten, G. et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes64, 2398–2408 (2015).
- Lu, Y. et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Rep.6, 37589 (2016).
Article CAS PubMed PubMed Central Google Scholar
- van der Hee, B. & Wells, J. M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol.29, 700–712 (2021).
- Hong, Y.-H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology146, 5092–5099 (2005).
Article CAS PubMed Google Scholar
- Jocken, J. W. E. et al. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Endocrinol.8, 372 (2017).
- Jia, Y. et al. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3-adrenergic receptor activation in high-fat diet-induced obese mice. Physiol.102, 273–281 (2017).
- Gao, Z. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes58, 1509–1517 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Cummings, J. H. & Macfarlane, G. T. The control and consequences of bacterial fermentation in the human colon. Appl. Bacteriol.70, 443–459 (1991).
Article CAS PubMed Google Scholar
- De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell156, 84–96 (2014).
- Kondo, T., Kishi, M., Fushimi, T. & Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. Agric. Food Chem.57, 5982–5986 (2009).
Article CAS PubMed Google Scholar
- Sahuri-Arisoylu, M. et al. Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. J. Obes.40, 955–963 (2016).
- Sinal, C. J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell102, 731–744 (2000).
Article CAS PubMed Google Scholar
- Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Bile acids and the gut microbiome. Opin. Gastroenterol.30, 332–338 (2014).
Article PubMed PubMed Central Google Scholar
- Pathak, P. et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology68, 1574–1588 (2018).
Article CAS PubMed Google Scholar
- Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut64, 1744–1754 (2015).
Article CAS PubMed Google Scholar
- Goswami, C., Iwasaki, Y. & Yada, T. Short-chain fatty acids suppress food intake by activating vagal afferent neurons. Nutr. Biochem.57, 130–135 (2018).
Article CAS PubMed Google Scholar
- Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes61, 364–371 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. J. Obes.39, 424–429 (2015).
- Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Commun.5, 3611 (2014).
Article CAS PubMed Google Scholar
- Hsiao, W. W. L., Metz, C., Singh, D. P. & Roth, J. The microbes of the intestine: an introduction to their metabolic and signaling capabilities. Metab. Clin. North. Am.37, 857–871 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res.1693, 128–133 (2018).
Article CAS PubMed PubMed Central Google Scholar
- Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell161, 264–276 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Natl Acad. Sci. USA108, 3047–3052 (2011).
Article CAS PubMed Central Google Scholar
- Swartz, T. D., Duca, F. A., de Wouters, T., Sakar, Y. & Covasa, M. Up-regulation of intestinal type 1 taste receptor 3 and sodium glucose luminal transporter-1 expression and increased sucrose intake in mice lacking gut microbiota. J. Nutr.107, 621–630 (2012).
Article CAS PubMed Google Scholar
- Duca, F. A., Swartz, T. D., Sakar, Y. & Covasa, M. Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS ONE7, e39748 (2012).
Article CAS PubMed PubMed Central Google Scholar
- de Wouters d’Oplinter, A. et al. Gut microbes participate in food preference alterations during obesity. Gut Microbes13, 1959242 (2021).
Article PubMed PubMed Central Google Scholar
- Trevelline, B. K. & Kohl, K. D. The gut microbiome influences host diet selection behavior. Natl Acad. Sci. USA119, e2117537119 (2022).
Article CAS PubMed PubMed Central Google Scholar
- Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays36, 940–949 (2014).
Article PubMed PubMed Central Google Scholar
- Leitão-Gonçalves, R. et al. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol.15, e2000862 (2017).
Article PubMed PubMed Central Google Scholar
- Hotamisligil, G. S. Inflammation and metabolic disorders. Nature444, 860–867 (2006).
Article CAS PubMed Google Scholar
- Renz, H. & Skevaki, C. Early life microbial exposures and allergy risks: opportunities for prevention. Rev. Immunol.21, 177–191 (2021).
Article CAS PubMed Google Scholar
- Pronovost, G. N. & Hsiao, E. Y. Perinatal interactions between the microbiome, immunity, and neurodevelopment. Immunity50, 18–36 (2019).
Article CAS PubMed PubMed Central Google Scholar
- Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes56, 1761–1772 (2007).
Article CAS PubMed Google Scholar
- Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science328, 228–231 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut68, 1516–1526 (2019).
Article CAS PubMed Google Scholar
- Rohr, M. W., Narasimhulu, C. A., Rudeski-Rohr, T. A. & Parthasarathy, S. Negative effects of a high-fat diet on intestinal permeability: a review. Nutr.11, 77–91 (2020).
Acknowledgements
This work was supported by grants from the National Science Foundation (BCS-1919892 and BCS-2142073) and William F. Milton Fund to R.N.C. and from the National Institute of Allergy and Infectious Disease (R00AI47165) to J.E.B.
Author information
Authors and Affiliations
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
Rachel N. Carmody
- Department of Biochemistry and Molecular Biology, Penn State Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, USA
Jordan E. Bisanz
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Correspondence to Rachel N. Carmody or Jordan E. Bisanz.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Microbiology thanks Andrew Gewirtz, Emanuel Canfora and Yolanda Sanz for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Methods
Supplementary Table 1
Supplementary Table 2
Glossary
α-Diversity
Diversity of microbial taxa within a given sample; distinct from β-diversity, which indexes differences in microbiome composition between samples.
Energy balance
The balance between energy intake and expenditure crucial in weight maintenance.
Faecal microbiota transplantation
(FMT). The experimental or therapeutic administration of preparations of faecal material intended to transfer microbiota-mediated effects to a recipient.
Germ-free animals
Animals lacking resident microorganisms, which may be derived through sterile surgical birth followed by rearing and propagation under strictly sterile conditions.
Gnotobiotic mice
Animals born without microorganisms (that is, germ-free) that may be colonized to study effects of microbial colonization on host physiology.
Gut barrier
Multilayered structure (consisting of mucus with embedded antimicrobial peptides and secretory IgA, epithelial cells and their cell-to-cell junctions, and the immune element-rich lamina propria) that simultaneously allows for nutrient absorption while restricting contact with the gut microbiota and its products.
Ketogenic diet
A protein-adequate diet marked by high-fat and very-low (<10% kcal) carbohydrate intake that forces the metabolism of stored fat into ketones.
Low-grade inflammation
Immunometabolic state, marked by the chronic production of low-level inflammatory factors, that bidirectionally potentiates metabolic disease.
Mediterranean diet
A diet emphasizing plant-based ingredients and unsaturated fats (mainly olive oil), moderate amounts of seafood and poultry and minimal amounts of refined carbohydrates and red meat.
Meta-analysis
Analysis using the data derived from multiple studies to achieve greater sample size and uncover reproducible findings.
Metabolic syndrome
A cluster of physiological conditions — including excess visceral fat, high fasting glucose, high triglycerides, low HDL cholesterol and/or high blood pressure — that can together increase the risk of diabetes, heart disease and stroke.
Microbiome
The genetic content and products of a community of microorganisms.
Microbiome diversity
Measurements of the number of microorganisms/genes present within an individual and/or how evenly they are distributed.
Microbiome-wide association studies
Studies employing a statistical approach that mines microbiome and host phenotype datasets to identify specific microbial taxa or microbial genes that are associated with specific host traits; also known as metagenome-wide association studies.
Microbiota
A community of microorganisms inclusive of bacteria, fungi, viruses, archaea and protists.
Roux-en-Y gastric bypass
(RYGB). Bariatric surgery promoting weight loss, in which a small pouch of stomach is connected to the jejunum, thereby restricting food intake and bypassing digestion in the duodenum.
Short-chain fatty acid
(SCFA). Microbial metabolite resulting from fermentation with wide-ranging effects on host physiology.
Undernutrition
A state of deficient energy intake characterized by stunting (low height-for-age), wasting (low weight-for-height) and/or underweight (low weight-for-age) that increases the risk of morbidity and mortality, especially in children.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Cite this article
Carmody, R.N., Bisanz, J.E. Roles of the gut microbiome in weight management. Nat Rev Microbiol (2023). https://doi.org/10.1038/s41579-023-00888-0
- Accepted20 March 2023
- Published03 May 2023
- DOIhttps://doi.org/10.1038/s41579-023-00888-0
Date: Published: 03 May 2023
Authors:
Link: https://www.nature.com/articles/s41579-023-00888-0
Nature Reviews Microbiology (2023)Cite this article
Nutrigenomics Institute is not responsible for the comments and opinions included in this article