-
Discussion
Abstract: Low- and no-calorie sweeteners (LNCS), intensely sweet compounds that virtually contain no calories, are used to replace added sugars in food and drinks. Knowledge about different LNCS data in Spanish foods and added sugar sources in Spain is limited, therefore our aim was to identify and compare their presence across main food groups consumed. Food and beverage products (n = 434) were obtained from the ANIBES Study (anthropometric data, macronutrients and micronutrients intake, practice of physical activity, socioeconomic data and lifestyles), a cross-sectional study of a representative sample of the Spanish population (9–75 years old; n = 2009) carried out in 2013. Food records were obtained from a three-day dietary record using a tablet device. Label data from 1,164 products of different brands were collected and reviewed for content of added sugars and LNCS. LNCS were present in diet soft drinks (100%), “other sweets” (89%), soya drinks (45%), and yogurt and fermented milks (18%). Added sugars were present mainly in sugar soft drinks (100%), energy drinks (96%), sports drinks (96%), bakery and pastry (100%), chocolates (100%), ice cream (100%), breakfast cereals/bars (96%) and jams (89%). Main LNCS were acesulfame K, aspartame, cyclamate and sucralose. Sucrose, dextrose, glucose-fructose syrup, caramel and honey were the main added sugars. Our results show the diversity of foods groups including these ingredients. These data are not compiled in food composition databases, which should be periodically updated to include LNCS and added sugars to facilitate their assessment and monitoring in nutritional surveys.
LNCS are widely used across many different types of food and beverage products commercialized in Spain. We examined a total of 1164 foods and beverage products grouped into 16 groups and 38 subgroups. To our knowledge, this is the first work conducted in our country to identify, examine and describe the presence of added sugars and LNCS in main food groups consumed by a representative sample of Spanish population. One of our main results is that 14 food subgroups declared including LNCS on their labels, of which eight belonged to the “beverages” group: soya drinks, diet soft drinks, juices and nectars, “other drinks”, sugar soft drinks, sports drinks, energy drinks and low-alcohol content beverages. In addition, breakfast cereals and cereal bars, bakery and pastry, yogurt and fermented milk, “other sweets”, jams and others, sausages and other meat products and appetizers.
In a recent publication by Dunford et al. [7], where LNCS were assessed in a total of 332,402 packaged branded food and beverage items across four countries (Australia, Mexico, New Zealand and the United States of America (USA)), authors also report that the “beverage” categories such as “soft drinks/sodas” had a higher proportion of products containing LNCS. However, in contrast with our observations, they found that “energy drinks” and “sports drinks” also presented this higher LNCS proportion, while in our study a higher proportion of these subgroups contained added sugars. It is useful to know which of the authorized LNCS and in what products they are employed, as well as if they are used alone or in combination with other LNCS or with added sugars. In this regard, in our sample, aspartame (E-951) and acesulfame K (E-950) were the most used LNCS, while neosperidine DC (E-959) was only utilized in the non-alcoholic beverages category. This is similar to findings from Norway [28], where the first two LNCS are also used in beverages. In turn, studies from Ireland [29] and Italy [30] reported sucralose and acesulfame K as the most commonly used sweeteners, respectively. Furthermore, both studies affirmed that intakes of each of these sweeteners by the total population were below the relevant ADI level [29,30]. In the USA, the trends in sales of LNCS show that the main sweeteners are aspartame and sucralose [9].
Added sugars were present in 25 subgroups (six main food groups) in our study, clearly a higher proportion than the inclusion of LNCS. These were mainly found in the “beverages” group, “milk and dairy products”, “sugar and sweets” and “other food groups”. In Canada, Acton et al. [31] analyzed 40,000 processed food products available for sale in 2015 and found that 66% contained at least one type of added sugar. In the USA, it was estimated that 68% of available processed foods and beverages contain caloric sweeteners (i.e., added sugars), 74% comprise both caloric and LNCS and 5% include only LNCS [32]. An Australian study, which examined over 5744 packaged foods, found that added sugar was present in 61% of the sample and LNCS ingredients had an even higher presence (69%). Moreover, only 31% of foods had no added sugars or LNCS. Sucrose, glucose syrup, maple syrup, maltodextrin and glucose/dextrose were the most common sugar ingredient types identified [33]. Lower proportions were found in Slovenia, where researchers evaluated 10,674 pre-packaged food items and found 52.6% contained added sugar [34]. Although several international studies undertook the assessment of LCNS and added sugar content in food products, most available food composition tables and databases still lack the detailed ingredients used in processed food and beverage products. Therefore, LNCS are not included neither added sugars are specified as such. This is also the case in Spain, where the present work could be a useful starting point for completing and updating these tables and databases through a harmonized data interchange with the research groups in charge of their management.
In terms of the potential public health impact in our country, it is relevant to identify LNCS in food and beverage products as the European regulation establishes that their consumption should be monitored and quantified in different population groups. At present, there are no published results on this matter for the Spanish population. In addition, added sugars contents should be reduced to meet public health guidelines and key products that contain them could be monitored for reformulation as well.
There are several general limitations affecting the precision and reliability of dietary assessments, such as the use of self-report methods, underreporting and reliance on participant’s memory, amongst others. In the ANIBES Study, the decision to use a three-day register for the estimation of the intake was due to the precision of the method, considered as the reference method for it [35]. A common limitation from this method is that the individual must know how to read and write, an aspect that fortunately today is fulfilled by practically the entire population. The limitations such as the time spent and cooperation of the participant, in addition to the cost of coding and analysis can be reduced thanks to the use of new technologies. Precision can be affected because the participant feels monitored and can change their habits. For that reason, it was decided to carry out this registration for three days, since it has been seen that fewer days may not be representative and more than 4–5 could affect the quality of the data, since the participant is discouraged and participation decreases [35].
One of the limitations from the ANIBES Study is the cross-sectional design, which provides evidence for association but not for casual relationship. There are also additional shortcomings in the assessment of LNCS consumption related to the presence and description of specific types of LNCS on product’s labels. For instance, the use of the “E-xxx” code that identifies a particular LNCS might be misleading for consumers and untrained dietitians and remain undetected. This can also be the case when evaluating added sugars as they are listed the ingredients list under many denominations. Furthermore, added sugar from high-alcoholic beverages were not studied, as manufacturers are not required to declare them. Therefore, many products that contain LNCS or added sugars may be overlooked in dietary surveillance. For example, the United States Department of Agriculture (USDA) Food and Nutrient Database for Dietary Studies (FNDDS) and the USDA National Nutrient Database for Standard Reference include many food and beverage items as either containing a “low- and non-calorie sweetener”, being “dietetic”, or “sugar-free”, however, there is a lack of information regarding the specific LNCS used [9].
Amongst the main strengths of our work is the use of the ANIBES study, a nationally representative sample that includes seven geographical zones (Nielsen zones [6]), three habitat size classes (urban, semi-urban and rural) and different age and socio-economical segments. This allowed us to focus on food categories that are representative of foods most commonly consumed. Secondly, the use of the tablet devices by participants allowed the detailed compilation of relevant products that presented LNCS and added sugars, overcoming the problem of underestimation or forgetting. Tablet devices, as well as smartphones, are being increasingly used by population for work or leisure, and some studies found them to be very useful for recording dietary intakes and self-monitoring [36]. Finally, the survey designed to collect product’s labels, including traditional as well as distribution brands, added reliability and representativity to the data collection.