3. Drugs
There are several agents for the pharmacologic therapy of obesity leading to decreased appetite, gastric emptying, nutrient absorption, or increased satiety. Some of these have gained marketing authorization during the last six years, and some others are still under development process [94,95]. Currently, the European Medicines Agency (EMA) authorized three drugs (orlistat, naltrexone/bupropion, and liraglutide), and the US Food and Drug Administration (FDA) has approved four drugs (orlistat, phentermine/topiramate, naltrexone/bupropion, and liraglutide) for obesity treatment [96]. The purpose of using pharmacotherapy to manage obesity is to increase patient adherence to lifestyle changes and to overcome the biological adaptations that occur with weight loss [97]. Increasing evidence has shown that behaviour-based interventions with one antiobesity medication can result in greater weight loss than usual care conditions only [96]. The efficacy of available anti-obesity drugs is often limited to a reduction of 5–10% of body weight over a 1-year period and weight loss typically does not occur for more than 6–8 months [98]. In a systematic review and network meta-analysis, five weight loss medications (orlistat, lorcaserin, naltrexone-bupropion, phentermine-topiramate, or liraglutide) were compared regarding efficacy on weight loss. In total, 28 RCTs with 29,018 patients were included. Study participants in the placebo group had a statistically significant lower odds ratio for achieving 5% weight loss after one year than participants taking drugs. Excess weight loss was 8.8 kg for phentermine-topiramate, 5.3 kg for liraglutide, 5.0 kg for naltrexone-bupropion, 3.2 kg for lorcaserin, and 2.6 kg for orlistat [99].
4. Bariatric Surgery
Bariatric surgery is appropriate for persons with severe obesity. Indications of bariatric surgery vary across countries. In most countries, the access to bariatric surgery is, e.g., restricted to persons for whom other weight loss measures have failed. There are two primary mechanisms: restriction and malabsorption of ingested food. A restrictive approach is physically limiting the quantity of food that can be ingested by limiting the size and capacity of the stomach while leaving the remainder of the gastrointestinal tract intact. Malabsorption of calories and nutrients occurs when a portion is bypassed or removed. Kilocalories and nutrients are less able to be absorbed because ingested food remains in the gut to a shorter distance. The International Federation for Surgery of Obesity and Metabolic Disorders (IFSO) has published an annual report of all bariatric surgery provided to the Global Registry [100]. Data from 51 countries with documented surgery between 2014 and 2018 were evaluated. The surgery procedure carried out most frequently was sleeve gastrectomy (46.0%) followed by Roux en Y gastric bypass (38.2%), one anastomosis gastric bypass (7.6%), and gastric banding (5.0%) [100]. Within the systematic review by Puzziferry et al., 29 clinical studies with 7971 patients were evaluated. The main finding was that gastric bypass resulted in greater weight loss than the gastric band [101]. A further systematic review and meta-analysis showed that all current bariatric procedures are associated with significant weight loss, but more long-term data are needed for one-anastomosis gastric bypass and sleeve gastrectomy [102]. Particularly worthy to mention is that patients with higher adherence rates to visits and behaviour changes before surgery are more likely to Nutrients 2022, 14, 169 10 of 15 lose more weight after surgery [103]. In any case, good preparation before and after surgery is indispensable to ensure the best outcomes [104]. Several steps during the preoperative evaluation are necessary. These include the individual’s psychological fitness to undergo bariatric surgery, the professional nutritional assessment, and patient education to guide the patient towards dietary modifications that are necessary after surgery [104]. Nutritional deficiencies are a long-term clinical issue in patients through modifications to the gastrointestinal tract [105]. The Clinical Practice Guidelines of the European Association for Endoscopic Surgery (EAES) recommend postoperative nutritional and behavioural advice for patients undergoing bariatric surgery [106]. Nutritional monitoring is an essential component of weight management after bariatric surgery to increase the patients’ adherence to healthy dietary habits and to appropriate supplementation measures [105]. In addition, monitoring prevents the risk of weight regain, makes it easier to detect possible nutritional deficiencies, and contributes to the preservation of a good quality of life [105].
5. Conclusions
This scientific viewpoint is a narrative review and not comparable with a systematic review but gives an overview of various treatment approaches, which should be used and combined considering the individuals‘ needs, preferences, weight status, and cardiometabolic risk factors. All treatment approaches have to result in a negative energy balance. Independent of the weight loss concept (e.g., intermittent fasting, low carb, low fat, drugs or, bariatric surgery), weight loss failed without a negative energy balance. Many trends like gene-based or microbiome-based dietary recommendations still lack conclusive scientific evidence. In general, weight loss studies often have methodological limitations (e.g., study design or duration), leading to results not being comparable, and they therefore should be interpreted with caution. With lifestyle changes, a moderate weight loss after one year is possible. Other approaches, such as bariatric surgery, lead to greater weight loss, but are proven only for specific target groups. More research, especially by long-term intervention studies, is needed to evaluate weight loss concepts and to obtain evidencebased tailored recommendations.
Author Contributions: M.W. and C.H. wrote the manuscript. All authors have read and agreed to the published version of the manuscript.
Funding: This work was supported by the enable competence cluster, an interdisciplinary cluster of nutrition science, funded by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF). The manuscript was written by the research group “Personalized nutrition and eHealth” (grant number: 01EA1709). The enable publication number is 79.
Acknowledgments: The authors thank Teresa Hölzl for designing the figures.
Conflicts of Interest: M.W. declares no conflict of interest. C.H. is a member of the scientific advisory board of the 4sigma GmbH Oberhaching, Germany.
References
1. World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. WHO Technical
Report Series 894;World Health Organization: Geneva, Switzerland, 2000; ISBN 9241208945.
2. Waxman, A. Why a global strategy on diet, physical activity and health? World Rev. Nutr. Diet. 2005, 95, 162–166. [CrossRef]
[PubMed]
3. World Health Organization. Obesity and Overweight. Available online: https://www.who.int/en/news-room/fact-sheets/
detail/obesity-and-overweight (accessed on 20 June 2021).
4. Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of co-morbidities related to obesity
and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [CrossRef] [PubMed]
5. Gao, M.; Piernas, C.; Astbury, N.M.; Hippisley-Cox, J.; O’Rahilly, S.; Aveyard, P.; Jebb, S.A. Associations between body-mass
index and COVID-19 severity in 69 million people in England: A prospective, community-based, cohort study. Lancet Diabetes
Endocrinol. 2021, 9, 350–359. [CrossRef]
6. Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [CrossRef] [PubMed]
7. Fontaine, K.R.; Redden, D.T.; Wang, C.; Westfall, A.O.; Allison, D.B. Years of life lost due to obesity. JAMA 2003, 289, 187–193.
[CrossRef]
Nutrients 2022, 14, 169 11 of 15
8. Whitlock, G.; Lewington, S.; Sherliker, P.; Clarke, R.; Emberson, J.; Halsey, J.; Qizilbash, N.; Collins, R.; Peto, R. Body-mass index
and cause-specific mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. Lancet 2009, 373, 1083–1096.
[CrossRef]
9. Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. European Guidelines for Obesity Management in
Adults. Obes. Facts 2015, 8, 402–424. [CrossRef] [PubMed]
10. Hill, J.O.;Wyatt, H.R.; Peters, J.C. Energy balance and obesity. Circulation 2012, 126, 126–132. [CrossRef] [PubMed]
11. Camacho, S.; Ruppel, A. Is the calorie concept a real solution to the obesity epidemic? Glob. Health Action 2017, 10, 1289650.
[CrossRef]
12. Wright, J.D.; Kennedy-Stephenson, J.;Wang, C.Y.; McDowell, M.A.; Johnson, C.L. Trends in Intake of Energy and Macronutrients—
United States, 1971–2000. JAMA 2004, 53, 80–82. [CrossRef]
13. Bassett, D.R.;Wyatt, H.R.; Thompson, H.; Peters, J.C.; Hill, J.O. Pedometer-measured physical activity and health behaviors in
U.S. adults. Med. Sci. Sports Exerc. 2010, 42, 1819–1825. [CrossRef]
14. Church, T.S.; Thomas, D.M.; Tudor-Locke, C.; Katzmarzyk, P.T.; Earnest, C.P.; Rodarte, R.Q.; Martin, C.K.; Blair, S.N.; Bouchard, C.
Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS ONE 2011, 6, e19657.
[CrossRef]
15. Rolls, B.J. The Supersizing of America: Portion Size and the Obesity Epidemic. Nutr. Today 2003, 38, 42–53. [CrossRef]
16. Yanovski, J.A. Obesity: Trends in underweight and obesity—Scale of the problem. Nat. Rev. Endocrinol. 2018, 14, 5–6. [CrossRef]
17. Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.;
Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975
to 2016: A pooled analysis of 2416 population-based measurement studies in 1289 million children, adolescents, and adults.
Lancet 2017, 390, 2627–2642. [CrossRef]
18. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698
population-based measurement studies with 192 million participants. Lancet 2016, 387, 1377–1396. [CrossRef]
19. Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi,
M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [CrossRef]
20. Smith, K.B.; Smith, M.S. Obesity Statistics. Prim. Care 2016, 43, 121–135, ix. [CrossRef]
21. Dicken, S.J.; Mitchell, J.J.; Le Newberry Vay, J.; Beard, E.; Kale, D.; Herbec, A.; Shahab, L. Impact of COVID-19 Pandemic onWeight
and BMI among UK Adults: A Longitudinal Analysis of Data from the HEBECO Study. Nutrients 2021, 13, 2911. [CrossRef]
[PubMed]
22. Seal, A.; Schaffner, A.; Phelan, S.; Brunner-Gaydos, H.; Tseng, M.; Keadle, S.; Alber, J.; Kiteck, I.; Hagobian, T. COVID-19 pandemic
and stay-at-home mandates promote weight gain in US adults. Obesity 2021, 30, 240–248. [CrossRef] [PubMed]
23. Stefan, N.; Birkenfeld, A.L.; Schulze, M.B. Global pandemics interconnected—Obesity, impaired metabolic health and COVID-19.
Nat. Rev. Endocrinol. 2021, 17, 135–149. [CrossRef]
24. Lemstra, M.; Bird, Y.; Nwankwo, C.; Rogers, M.; Moraros, J. Weight loss intervention adherence and factors promoting adherence:
A meta-analysis. Patient Prefer. Adherence 2016, 10, 1547–1559. [CrossRef] [PubMed]
25. European Food Safety Authority. EFSA Sets European Dietary Reference Values for Nutrient Intakes. Available online: https:
//www.efsa.europa.eu/en/press/news/nda100326 (accessed on 20 June 2021).
26. European Food Safety Authority. Scientific Opinion on Dietary Reference Values for protein. EFSA J. 2012, 10, 2557. [CrossRef]
27. Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.;Witkow, S.; Greenberg, I.; Golan, R.; Fraser, D.; Bolotin, A.; Vardi, H.; et al.
Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 2008, 359, 229–241. [CrossRef] [PubMed]
28. Sacks, F.M.; Bray, G.A.; Carey, V.J.; Smith, S.R.; Ryan, D.H.; Anton, S.D.; McManus, K.; Champagne, C.M.; Bishop, L.M.; Laranjo,
N.; et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 2009,
360, 859–873. [CrossRef] [PubMed]
29. Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.;Willett,W.C.; Solomon,
S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3,
e419–e428. [CrossRef]
30. Gjuladin-Hellon, T.; Davies, I.G.; Penson, P.; Amiri Baghbadorani, R. Effects of carbohydrate-restricted diets on low-density
lipoprotein cholesterol levels in overweight and obese adults: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 161–180.
[CrossRef] [PubMed]
31. Austin, G.L.; Ogden, L.G.; Hill, J.O. Trends in carbohydrate, fat, and protein intakes and association with energy intake in
normal-weight, overweight, and obese individuals: 1971-2006. Am. J. Clin. Nutr. 2011, 93, 836–843. [CrossRef] [PubMed]
32. Manheimer, E.W.; van Zuuren, E.J.; Fedorowicz, Z.; Pijl, H. Paleolithic nutrition for metabolic syndrome: Systematic review and
meta-analysis. Am. J. Clin. Nutr. 2015, 102, 922–932. [CrossRef]
33. Mellberg, C.; Sandberg, S.; Ryberg, M.; Eriksson, M.; Brage, S.; Larsson, C.; Olsson, T.; Lindahl, B. Long-term effects of a
Palaeolithic-type diet in obese postmenopausal women: A 2-year randomized trial. Eur. J. Clin. Nutr. 2014, 68, 350–357.
[CrossRef]
34. Johnston, B.C.; Kanters, S.; Bandayrel, K.;Wu, P.; Naji, F.; Siemieniuk, R.A.; Ball, G.D.C.; Busse, J.W.; Thorlund, K.; Guyatt, G.;
et al. Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA 2014, 312,
923–933. [CrossRef]
Nutrients 2022, 14, 169 12 of 15
35. Gardner, C.D.; Trepanowski, J.F.; Del Gobbo, L.C.; Hauser, M.E.; Rigdon, J.; Ioannidis, J.P.A.; Desai, M.; King, A.C. Effect of
Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern
or Insulin Secretion: The DIETFITS Randomized Clinical Trial. JAMA 2018, 319, 667–679. [CrossRef] [PubMed]
36. Churuangsuk, C.; Kherouf, M.; Combet, E.; Lean, M. Low-carbohydrate diets for overweight and obesity: A systematic review of
the systematic reviews. Obes. Rev. 2018, 19, 1700–1718. [CrossRef] [PubMed]
37. Jenkins, D.J.A.; Wong, J.M.W.; Kendall, C.W.C.; Esfahani, A.; Ng, V.W.Y.; Leong, T.C.K.; Faulkner, D.A.; Vidgen, E.; Greaves, K.A.;
Paul, G.; et al. The effect of a plant-based low-carbohydrate (“Eco-Atkins”) diet on body weight and blood lipid concentrations in
hyperlipidemic subjects. Arch. Intern. Med. 2009, 169, 1046–1054. [CrossRef] [PubMed]
38. Jenkins, D.J.A.; Wong, J.M.W.; Kendall, C.W.C.; Esfahani, A.; Ng, V.W.Y.; Leong, T.C.K.; Faulkner, D.A.; Vidgen, E.; Paul, G.;
Mukherjea, R.; et al. Effect of a 6-month vegan low-carbohydrate (‘Eco-Atkins’) diet on cardiovascular risk factors and body
weight in hyperlipidaemic adults: A randomised controlled trial. BMJ Open 2014, 4, e003505. [CrossRef] [PubMed]
39. Esposito, K.; Kastorini, C.-M.; Panagiotakos, D.B.; Giugliano, D. Mediterranean diet and weight loss: Meta-analysis of randomized
controlled trials. Metab. Syndr. Relat. Disord. 2011, 9, 1–12. [CrossRef] [PubMed]
40. Leslie, W.S.; Taylor, R.; Harris, L.; Lean, M.E.J. Weight losses with low-energy formula diets in obese patients with and without
type 2 diabetes: Systematic review and meta-analysis. Int. J. Obes. 2016, 41, 96–101. [CrossRef] [PubMed]
41. Astbury, N.M.; Piernas, C.; Hartmann-Boyce, J.; Lapworth, S.; Aveyard, P.; Jebb, S.A. A systematic review and meta-analysis of
the effectiveness of meal replacements for weight loss. Obes. Rev. 2019, 20, 569–587. [CrossRef]
42. Lean, M.E.J.; Leslie,W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.;
Hollingsworth, K.G.; et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label,
cluster-randomised trial. Lancet 2018, 391, 541–551. [CrossRef]
43. Lean, M.E.J.; Leslie,W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.;
Hollingsworth, K.G.; et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes:
2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019, 7, 344–355. [CrossRef]
44. Conley, M.; Le Fevre, L.; Haywood, C.; Proietto, J. Is two days of intermittent energy restriction per week a feasible weight loss
approach in obese males? A randomised pilot study. Nutr. Diet. 2018, 75, 65–72. [CrossRef]
45. Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.;
et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy
Obese Adults: A Randomized Clinical Trial. JAMA Intern. Med. 2017, 177, 930–938. [CrossRef] [PubMed]
46. Cioffi, I.; Evangelista, A.; Ponzo, V.; Ciccone, G.; Soldati, L.; Santarpia, L.; Contaldo, F.; Pasanisi, F.; Ghigo, E.; Bo, S. Intermittent
versus continuous energy restriction on weight loss and cardiometabolic outcomes: A systematic review and meta-analysis of
randomized controlled trials. J. Transl. Med. 2018, 16, 371. [CrossRef]
47. Harvie, M.N.; Pegington, M.; Mattson, M.P.; Frystyk, J.; Dillon, B.; Evans, G.; Cuzick, J.; Jebb, S.A.; Martin, B.; Cutler, R.G.; et al.
The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial
in young overweight women. Int. J. Obes. 2011, 35, 714–727. [CrossRef] [PubMed]
48. Sundfør, T.M.; Svendsen, M.; Tonstad, S. Effect of intermittent versus continuous energy restriction on weight loss, maintenance
and cardiometabolic risk: A randomized 1-year trial. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 698–706. [CrossRef]
49. Harris, L.; Hamilton, S.; Azevedo, L.B.; Olajide, J.; de Brún, C.; Waller, G.; Whittaker, V.; Sharp, T.; Lean, M.; Hankey, C.; et al.
Intermittent fasting interventions for treatment of overweight and obesity in adults: A systematic review and meta-analysis. JBI
Database System. Rev. Implement. Rep. 2018, 16, 507–547. [CrossRef]
50. Allaf, M.; Elghazaly, H.; Mohamed, O.G.; Fareen, M.F.K.; Zaman, S.; Salmasi, A.-M.; Tsilidis, K.; Dehghan, A. Intermittent fasting
for the prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2021, 1, CD013496. [CrossRef] [PubMed]
51. Templeman, I.; Smith, H.A.; Chowdhury, E.; Chen, Y.-C.; Carroll, H.; Johnson-Bonson, D.; Hengist, A.; Smith, R.; Creighton,
J.; Clayton, D.; et al. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and
metabolic health in lean adults. Sci. Transl. Med. 2021, 13, eabd8034. [CrossRef] [PubMed]
52. Lowe, D.A.;Wu, N.; Rohdin-Bibby, L.; Moore, A.H.; Kelly, N.; Liu, Y.E.; Philip, E.; Vittinghoff, E.; Heymsfield, S.B.; Olgin, J.E.;
et al. Effects of Time-Restricted Eating onWeight Loss and Other Metabolic Parameters inWomen and MenWith Overweight
and Obesity: The TREAT Randomized Clinical Trial. JAMA Intern. Med. 2020, 180, 1491–1499. [CrossRef]
53. Jamshed, H.; Beyl, R.A.; Della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves
24-h Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients 2019, 11, 1234.
[CrossRef]
54. Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin
Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27,
1212–1221.e3. [CrossRef] [PubMed]
55. Nas, A.; Mirza, N.; Hägele, F.; Kahlhöfer, J.; Keller, J.; Rising, R.; Kufer, T.A.; Bosy-Westphal, A. Impact of breakfast skipping
compared with dinner skipping on regulation of energy balance and metabolic risk. Am. J. Clin. Nutr. 2017, 105, 1351–1361.
[CrossRef] [PubMed]
56. Mekary, R.A.; Giovannucci, E.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Eating patterns and type 2 diabetes risk in men: Breakfast
omission, eating frequency, and snacking. Am. J. Clin. Nutr. 2012, 95, 1182–1189. [CrossRef]
Nutrients 2022, 14, 169 13 of 15
57. Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.;Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan,
M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [CrossRef]
58. Loos, R.J. The genetics of adiposity. Curr. Opin. Genet. Dev. 2018, 50, 86–95. [CrossRef]
59. Holzapfel, C.; Dawczynski, C.; Henze, A.; Simon, M.C. Personalized dietary recommendations for weight loss. A scientific
perspective from various angles. Ernahr. Umsch. 2021, 68, 26–35.
60. Claussnitzer, M.; Dankel, S.N.; Kim, K.-H.; Quon, G.; Meuleman, W.; Haugen, C.; Glunk, V.; Sousa, I.S.; Beaudry, J.L.; Puviindran,
V.; et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N. Engl. J. Med. 2015, 373, 895–907. [CrossRef]
61. Holzapfel, C.; Sag, S.; Graf-Schindler, J.; Fischer, M.; Drabsch, T.; Illig, T.; Grallert, H.; Stecher, L.; Strack, C.; Caterson, I.D.; et al.
Association between Single Nucleotide Polymorphisms and Weight Reduction in Behavioural Interventions-A Pooled Analysis.
Nutrients 2021, 13, 819. [CrossRef] [PubMed]
62. Celis-Morales, C.; Marsaux, C.F.; Livingstone, K.M.; Navas-Carretero, S.; San-Cristobal, R.; Fallaize, R.; Macready, A.L.;
O’Donovan, C.; Woolhead, C.; Forster, H.; et al. Can genetic-based advice help you lose weight? Findings from the Food4Me
European randomized controlled trial. Am. J. Clin. Nutr. 2017, 105, 1204–1213. [CrossRef]
63. Ellis, A.; Rozga, M.; Braakhuis, A.; Monnard, C.R.; Robinson, K.; Sinley, R.; Wanner, A.; Vargas, A.J. Effect of Incorporating
Genetic Testing Results into Nutrition Counseling and Care on Health Outcomes: An Evidence Analysis Center Systematic
Review-Part II. J. Acad. Nutr. Diet. 2021, 121, 582–605.e17. [CrossRef]
64. Camp, K.M.; Trujillo, E. Position of the Academy of Nutrition and Dietetics: Nutritional genomics. J. Acad. Nutr. Diet. 2014, 114,
299–312. [CrossRef] [PubMed]
65. Drabsch, T.; Holzapfel, C. A Scientific Perspective of Personalised Gene-Based Dietary Recommendations forWeight Management.
Nutrients 2019, 11, 617. [CrossRef]
66. Bayer, S.; Winkler, V.; Hauner, H.; Holzapfel, C. Associations between Genotype-Diet Interactions and Weight Loss-A Systematic
Review. Nutrients 2020, 12, 2891. [CrossRef] [PubMed]
67. Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.;
et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat.
Genet. 2018, 50, 1219–1224. [CrossRef] [PubMed]
68. Khera, A.V.; Chaffin, M.; Wade, K.H.; Zahid, S.; Brancale, J.; Xia, R.; Distefano, M.; Senol-Cosar, O.; Haas, M.E.; Bick, A.; et al.
Polygenic Prediction ofWeight and Obesity Trajectories from Birth to Adulthood. Cell 2019, 177, 587–596.e9. [CrossRef]
69. Kolodziejczyk, A.A.; Zheng, D.; Elinav, E. Diet-microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 2019, 17,
742–753. [CrossRef]
70. Magni, P.; Bier, D.M.; Pecorelli, S.; Agostoni, C.; Astrup, A.; Brighenti, F.; Cook, R.; Folco, E.; Fontana, L.; Gibson, R.A.; et al.
Perspective: Improving Nutritional Guidelines for Sustainable Health Policies: Current Status and Perspectives. Adv. Nutr. 2017,
8, 532–545. [CrossRef]
71. von Schwartzenberg, R.J.; Bisanz, J.E.; Lyalina, S.; Spanogiannopoulos, P.; Ang, Q.Y.; Cai, J.; Dickmann, S.; Friedrich, M.; Liu, S.-Y.;
Collins, S.L.; et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature 2021, 595, 272–277. [CrossRef]
72. Breuninger, T.A.; Wawro, N.; Breuninger, J.; Reitmeier, S.; Clavel, T.; Six-Merker, J.; Pestoni, G.; Rohrmann, S.; Rathmann, W.;
Peters, A.; et al. Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation.
Microbiome 2021, 9, 61. [CrossRef]
73. Cani, P.D.; van Hul, M.; Lefort, C.; Depommier, C.; Rastelli, M.; Everard, A. Microbial regulation of organismal energy homeostasis.
Nat. Metab. 2019, 1, 34–46. [CrossRef]
74. DGAC. Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Available online: https://health.gov/sites/default/
files/2019-09/Scientific-Report-of-the-2015-Dietary-Guidelines-Advisory-Committee.pdf (accessed on 20 June 2021).
75. Jebb, S.A.; Ahern, A.L.; Olson, A.D.; Aston, L.M.; Holzapfel, C.; Stoll, J.; Amann-Gassner, U.; Simpson, A.E.; Fuller, N.R.; Pearson,
S.; et al. Primary care referral to a commercial provider for weight loss treatment versus standard care: A randomised controlled
trial. Lancet 2011, 378, 1485–1492. [CrossRef]
76. Holzapfel, C.; Cresswell, L.; Ahern, A.L.; Fuller, N.R.; Eberhard, M.; Stoll, J.; Mander, A.P.; Jebb, S.A.; Caterson, I.D.; Hauner, H.
The challenge of a 2-year follow-up after intervention for weight loss in primary care. Int. J. Obes. 2014, 38, 806–811. [CrossRef]
77. Johnston, C.A.; Rost, S.; Miller-Kovach, K.; Moreno, J.P.; Foreyt, J.P. A randomized controlled trial of a community-based
behavioral counseling program. Am. J. Med. 2013, 126, 1143.e19–1143.e24. [CrossRef]
78. Ard, J.D.; Lewis, K.H.; Rothberg, A.; Auriemma, A.; Coburn, S.L.; Cohen, S.S.; Loper, J.; Matarese, L.; Pories, W.J.; Periman, S.
Effectiveness of a Total Meal Replacement Program (OPTIFAST Program) on Weight Loss: Results from the OPTIWIN Study.
Obesity 2019, 27, 22–29. [CrossRef] [PubMed]
79. Harvey, J.; Krukowski, R.; Priest, J.;West, D. Log Often, Lose More: Electronic Dietary Self-Monitoring forWeight Loss. Obesity
2019, 27, 380–384. [CrossRef]
80. Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; van Hubbard, S.; Jakicic, J.M.;
Kushner, R.F.; et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. Circulation 2014,
129, S102–S138. [CrossRef]
81. Patel, M.L.;Wakayama, L.N.; Bennett, G.G. Self-Monitoring via Digital Health inWeight Loss Interventions: A Systematic Review
Among Adults with Overweight or Obesity. Obesity 2021, 29, 478–499. [CrossRef]
Nutrients 2022, 14, 169 14 of 15
82. Michie, S.; Abraham, C.; Whittington, C.; McAteer, J.; Gupta, S. Effective techniques in healthy eating and physical activity
interventions: A meta-regression. Health Psychol. 2009, 28, 690–701. [CrossRef]
83. Harkin, B.;Webb, T.L.; Chang, B.P.I.; Prestwich, A.; Conner, M.; Kellar, I.; Benn, Y.; Sheeran, P. Does monitoring goal progress
promote goal attainment? A meta-analysis of the experimental evidence. Psychol. Bull. 2016, 142, 198–229. [CrossRef] [PubMed]
84. Spring, B.; Champion, K.E.; Acabchuk, R.; Hennessy, E.A. Self-regulatory behaviour change techniques in interventions to
promote healthy eating, physical activity, or weight loss: A meta-review. Health Psychol. Rev. 2021, 15, 508–539. [CrossRef]
[PubMed]
85. Carter, M.C.; Burley, V.J.; Nykjaer, C.; Cade, J.E. Adherence to a smartphone application for weight loss compared to website and
paper diary: Pilot randomized controlled trial. J. Med. Internet Res. 2013, 15, e32. [CrossRef]
86. Stubbs, R.J.; Duarte, C.; Palmeira, A.L.; Sniehotta, F.F.; Horgan, G.; Larsen, S.C.; Marques, M.M.; Evans, E.H.; Ermes, M.;
Harjumaa, M.; et al. Evidence-Based Digital Tools for Weight Loss Maintenance: The NoHoW Project. Obes. Facts 2021, 14,
320–333. [CrossRef] [PubMed]
87. Turner-McGrievy, G.; Tate, D. Tweets, Apps, and Pods: Results of the 6-month Mobile Pounds Off Digitally (Mobile POD)
randomized weight-loss intervention among adults. J. Med. Internet Res. 2011, 13, e120. [CrossRef] [PubMed]
88. Wharton, C.M.; Johnston, C.S.; Cunningham, B.K.; Sterner, D. Dietary self-monitoring, but not dietary quality, improves with use
of smartphone app technology in an 8-week weight loss trial. J. Nutr. Educ. Behav. 2014, 46, 440–444. [CrossRef]
89. Villinger, K.;Wahl, D.R.; Boeing, H.; Schupp, H.T.; Renner, B. The effectiveness of app-based mobile interventions on nutrition
behaviours and nutrition-related health outcomes: A systematic review and meta-analysis. Obes. Rev. 2019, 20, 1465–1484.
[CrossRef]
90. Roess, A. The Promise, Growth, and Reality of Mobile Health—Another Data-free Zone. N. Engl. J. Med. 2017, 377, 2010–2011.
[CrossRef] [PubMed]
91. Svetkey, L.P.; Batch, B.C.; Lin, P.-H.; Intille, S.S.; Corsino, L.; Tyson, C.C.; Bosworth, H.B.; Grambow, S.C.; Voils, C.; Loria, C.; et al.
Cell phone intervention for you (CITY): A randomized, controlled trial of behavioral weight loss intervention for young adults
using mobile technology. Obesity 2015, 23, 2133–2141. [CrossRef] [PubMed]
92. Bardus, M.; van Beurden, S.B.; Smith, J.R.; Abraham, C. A review and content analysis of engagement, functionality, aesthetics,
information quality, and change techniques in the most popular commercial apps for weight management. Int. J. Behav. Nutr.
Phys. Act. 2016, 13, 35. [CrossRef]
93. Rivera, J.; McPherson, A.; Hamilton, J.; Birken, C.; Coons, M.; Iyer, S.; Agarwal, A.; Lalloo, C.; Stinson, J. Mobile Apps for Weight
Management: A Scoping Review. JMIR Mhealth Uhealth 2016, 4, e87. [CrossRef]
94. Pilitsi, E.; Farr, O.M.; Polyzos, S.A.; Perakakis, N.; Nolen-Doerr, E.; Papathanasiou, A.-E.; Mantzoros, C.S. Pharmacotherapy of
obesity: Available medications and drugs under investigation. Metabolism 2019, 92, 170–192. [CrossRef]
95. Daneschvar, H.L.; Aronson, M.D.; Smetana, G.W. FDA-Approved Anti-Obesity Drugs in the United States. Am. J. Med. 2016, 129,
879.e1–879.e6. [CrossRef] [PubMed]
96. Tak, Y.J.; Lee, S.Y. Anti-Obesity Drugs: Long-Term Efficacy and Safety: An Updated Review. World J. Mens. Health 2021, 39,
208–221. [CrossRef]
97. Apovian, C.M.; Aronne, L.J.; Bessesen, D.H.; McDonnell, M.E.; Murad, M.H.; Pagotto, U.; Ryan, D.H.; Still, C.D. Pharmacological
management of obesity: An endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2015, 100, 342–362. [CrossRef]
[PubMed]
98. May, M.; Schindler, C.; Engeli, S. Modern pharmacological treatment of obese patients. Ther. Adv. Endocrinol. Metab. 2020, 11,
2042018819897527. [CrossRef] [PubMed]
99. Khera, R.; Murad, M.H.; Chandar, A.K.; Dulai, P.S.;Wang, Z.; Prokop, L.J.; Loomba, R.; Camilleri, M.; Singh, S. Association of
Pharmacological Treatments for Obesity With Weight Loss and Adverse Events: A Systematic Review and Meta-analysis. JAMA
2016, 315, 2424–2434. [CrossRef] [PubMed]
100. Welbourn, R.; Hollyman, M.; Kinsman, R.; Dixon, J.; Liem, R.; Ottosson, J.; Ramos, A.; Våge, V.; Al-Sabah, S.; Brown,W.; et al.
Bariatric Surgery Worldwide: Baseline Demographic Description and One-Year Outcomes from the Fourth IFSO Global Registry
Report 2018. Obes. Surg. 2019, 29, 782–795. [CrossRef]
101. Puzziferri, N.; Roshek, T.B.; Mayo, H.G.; Gallagher, R.; Belle, S.H.; Livingston, E.H. Long-term follow-up after bariatric surgery:
A systematic review. JAMA 2014, 312, 934–942. [CrossRef]
102. O’Brien, P.E.; Hindle, A.; Brennan, L.; Skinner, S.; Burton, P.; Smith, A.; Crosthwaite, G.; Brown,W. Long-Term Outcomes After
Bariatric Surgery: A Systematic Review and Meta-analysis of Weight Loss at 10 or More Years for All Bariatric Procedures and a
Single-Centre Review of 20-Year Outcomes After Adjustable Gastric Banding. Obes. Surg. 2019, 29, 3–14. [CrossRef]
103. Toussi, R.; Fujioka, K.; Coleman, K.J. Pre- and postsurgery behavioral compliance, patient health, and postbariatric surgical
weight loss. Obesity 2009, 17, 996–1002. [CrossRef]
104. Benalcazar, D.A.; Cascella, M. StatPearls: Obesity Surgery Pre-Op Assessment And Preparation; StatPearls Publishing: Florida, FL,
USA, 2021.
Nutrients 2022, 14, 169 15 of 15
105. Lupoli, R.; Lembo, E.; Saldalamacchia, G.; Avola, C.K.; Angrisani, L.; Capaldo, B. Bariatric surgery and long-term nutritional
issues. World J. Diabetes 2017, 8, 464–474. [CrossRef]
106. Di Lorenzo, N.; Antoniou, S.A.; Batterham, R.L.; Busetto, L.; Godoroja, D.; Iossa, A.; Carrano, F.M.; Agresta, F.; Alarçon, I.; Azran,
C.; et al. Clinical practice guidelines of the European Association for Endoscopic Surgery (EAES) on bariatric surgery: Update
2020 endorsed by IFSO-EC, EASO and ESPCOP. Surg. Endosc. 2020, 34, 2332–2358. [CrossRef] [PubMed]